Energy Storage
Energy Storage
-
Technical committeeTypeAcronymUL 9540 Ed. 2-2020Published year2020KeywordsDescription
These requirements cover energy storage systems that are intended to receive and store energy in some form so that the energy storage system can provide electrical energy to loads or to the local/area electric power system (EPS) when needed. The types of energy storage covered under this standard include electrochemical, chemical, mechanical and thermal. The energy storage system shall be constructed either as one unitary complete piece of equipment or as matched assemblies, that when connected, form the system. This standard is a system standard, where an energy storage system consists of the an energy storage mechanism, power conversion equipment and balance of plant equipment as shown in Figure 6.1. Individual parts (e.g. power conversion system, battery system, etc.) of an energy storage system are not considered an energy storage system on their own. This standard evaluates the compatibility and safety of these various components integrated into a system.
Technology -
Technical committeeTypeAcronymITU-T Y Suppl. 30 (01/2016)Published year2016KeywordsDescription
This supplement presents the overview of infrastructure in cities. Generally the city infrastructure can be classified as digital/ICT infrastructure and physical infrastructure. The intelligent improvement of physical infrastructure can be achieved through the widely adoption of information and communication technologies. In this sense, ICT acts as an enabler to construct Smart Sustainable Cities. Consequently using ICTs in SSC results in cost and energy saving, increased economic growth, improved quality of life (QoL), and reduced environmental footprint.
Technology -
Technical committeeTypeAcronymISO 21648:2008CommitteePublished year2008KeywordsDescription
ISO 21648:2008 establishes the design, analysis, material selection and characterization, fabrication, test and inspection of the flywheel module (FM) in a flywheel used for energy storage in space systems. These requirements, when implemented on a flywheel module, will ensure a high level of confidence in achieving safe operation and mission success. With appropriate modifications, ISO 21648:2008 can also be applied to similar devices, such as momentum and reaction wheels and control-moment gyroscopes. The requirements set forth in ISO 21648:2008 are the minimum requirements for flywheel modules in flywheels used in space flight applications. They are specifically applicable to the parts in the flywheel rotor assembly (FRA), including rim, hub and/or shaft and other associated rotating parts, such as the bearings and the motor generator rotor. The requirements are also relevant to the non-rotating parts, such as module housing, main suspension assembly (magnetic or rolling element bearings, superconductor bearings, etc.), motor stator, caging mechanism and sensors within the module housing, and backup bearings, if applicable. However, control and interface electronics are not covered in ISO 21648:2008.
Technology -
Technical committeeTypeAcronymIEEE 1679-2020CommitteePublished year2020Description
Recommended information for an objective evaluation of an emerging or alternative energy storage device or system by a potential user for any stationary application is covered in this document. Energy storage technologies are those that provide a means for the reversible storage of electrical energy, i.e., the device receives electrical energy and is able to discharge electrical energy at a later time. The storage medium may be electrochemical (e.g., batteries), kinetic (e.g., flywheels), electrostatic (e.g., electric double-layer capacitors), thermal, compressed air, or some other medium. Devices recharged by non-electrical means, such as fuel cells, are beyond the scope of this document. The document provides a common basis for the expression of performance characteristics and the treatment of life-testing data. A standard approach for analysis of failure modes is also provided, including assessment of safety attributes. The intent of this document is to ensure that characterization information, including test conditions and limits of applicability, is sufficiently complete to allow valid comparisons to be made.
Technology -
Technical committeeTypeAcronymIEC 62485-6:2021CommitteePublished year2021Description
IEC 62485-6:2021 applies to battery installations used for electric off-road vehicles; it does not cover the design of such vehicles. Examples of the main applications are: - industrial • cleaning machines, • trucks for material handling, for example, lift trucks, tow trucks, automatic guided vehicles, • electrically propulsed lifting platforms; - other applications • electric powered boats and ships.
Technology -
Technical committeeTypeAcronymIEC 62485-5:2020CommitteePublished year2020Description
IEC 62485-5:2020 applies to the installation of one or more stationary secondary batteries having a maximum aggregate DC voltage of 1 500 V to any DC part of the power network, and describes the principal measures for protections during normal operation or under expected fault conditions against hazards generated from: – electricity, – short-circuits, – electrolyte, – gas emission, – fire, – explosion. This document provides requirements on safety aspects associated with the installation, use, inspection, and maintenance and disposal of lithium ion batteries used in stationary applications.
Technology -
Technical committeeTypeAcronymIEC 62485-4:2015CommitteePublished year2015KeywordsDescription
IEC 62485-4:2015 applies to the safety aspects associated with the accommodation, the arrangements of circuits and the operation of secondary valve-regulated lead-acid cells and batteries in portable appliances. Requirements are specified which oblige the manufacturers of appliances and secondary batteries to prevent the misuse of batteries in the course of operation to provide protective measures avoiding injury to persons in case of battery failure and to provide sufficient information to users. This standard does not apply to secondary cells and batteries containing alkaline or other non-acid electrolytes. This first edition cancels and replaces the first edition of IEC TR 61056-3 published in 1991. It constitutes a technical revision. This edition includes the following significant technical changes with respect to the IEC TR 61056-3: a) updating of the requirements, and harmonisation of the text for consistency with the IEC 62485 series.
Technology -
Technical committeeTypeAcronymIEC 62485-3:2014CommitteePublished year2014Description
IEC 62485-3:2014 applies to secondary batteries and battery installations used for electric vehicles, e.g. in electric industrial trucks (including lift trucks, tow trucks, cleaning machines, automatic guided vehicles), in battery powered locomotives, in electric vehicles (e.g. goods vehicles, golf carts, bicycles, wheelchairs), and does not cover the design of such vehicles. It provides requirements on safety aspects associated with the installation, use, inspection, maintenance and disposal of batteries. This edition includes the following significant technical changes with respect to the previous edition: a) a comprehensive revision of Clause 6, presenting a unified and changed formula for the calculation of the required ventilation air flow during battery charging; b) addition of requirements for properties of floor material and battery changing equipment in Clause 9.
Technology -
Technical committeeTypeAcronymIEC 62485-2:2010CommitteePublished year2010Description
IEC 62485-2:2010 applies to stationary secondary batteries and battery installations with a maximum voltage of DC 1 500 V (nominal) and describes the principal measures for protections against hazards generated from: - electricity, - gas emission, - electrolyte. This International Standard provides requirements on safety aspects associated with the erection, use, inspection, maintenance and disposal. It covers lead-acid and NiCd/NiMH batteries.
Technology -
Technical committeeTypeAcronymIEC 62485-1:2015CommitteePublished year2015Description
IEC 62485-1:2015 specifies the basic requirements for secondary batteries and battery installations. The requirements regarding safety, reliability, life expectancy, mechanical strength, cycle stability, internal resistance, and battery temperature, are determined by various applications, and this, in turn, determines the selection of the battery design and technology. In general, the requirements and definitions are specified for lead-acid and nickel-cadmium batteries. For other battery systems with aqueous electrolyte, the requirements may be applied accordingly. The standard covers safety aspects taking into account hazards associated with: - electricity (installation, charging, discharging, etc.); - electrolyte; - inflammable gas mixtures; - storage and transportation.
Technology