Solar Power
Solar Power
-
Technical committeeTypeAcronymIEC 60904-4:2019 RLVCommitteePublished year2019KeywordsDescription
IEC 60904-4:2019 RLV contains both the official IEC International Standard and its Redline version. The Redline version is available in English only and provides you with a quick and easy way to compare all the changes between the official IEC Standard and its previous edition. IEC 60904-4:2019 sets the requirements for calibration procedures intended to establish the traceability of photovoltaic (PV) reference devices to SI units as required by IEC 60904-2. This document applies to PV reference devices that are used to measure the irradiance of natural or simulated sunlight for the purpose of quantifying the performance of PV devices. The use of a PV reference device is required in many standards concerning PV (e.g. IEC 60904-1 and IEC 60904-3). This document has been written with single-junction PV reference devices in mind, in particular crystalline silicon, but it is sufficiently general to include other single-junction technologies. This second edition cancels and replaces the first edition published in 2009. This edition includes the following significant technical changes with respect to the previous edition: - modification of standard title; - inclusion of working reference in traceability chain; - update of WRR with respect to SI; - revision of all methods and their uncertainties in annex; - harmonization of symbols and formulae with other IEC standards. The contents of the corrigendum of September 2020 have been included in this copy.
Technology -
Technical committeeTypeAcronymIEC 60904-4CommitteePublished year2009KeywordsDescription
IEC 60904-4:2019 is available as IEC 60904-4:2019 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 60904-4:2019 sets the requirements for calibration procedures intended to establish the traceability of photovoltaic (PV) reference devices to SI units as required by IEC 60904-2. This document applies to PV reference devices that are used to measure the irradiance of natural or simulated sunlight for the purpose of quantifying the performance of PV devices. The use of a PV reference device is required in many standards concerning PV (e.g. IEC 60904-1 and IEC 60904-3). This document has been written with single-junction PV reference devices in mind, in particular crystalline silicon, but it is sufficiently general to include other single-junction technologies. This second edition cancels and replaces the first edition published in 2009. This edition includes the following significant technical changes with respect to the previous edition:
modification of standard title;
- inclusion of working reference in traceability chain;
- update of WRR with respect to SI;
- revision of all methods and their uncertainties in annex
- harmonization of symbols and formulae with other IEC standards.
The contents of the corrigendum of September 2020 have been included in this copy. -
Technical committeeTypeAcronymIEC 60904-3:2019 RLVCommitteePublished year2019KeywordsDescription
IEC 60904-3:2019 RLV contains both the official IEC International Standard and its Redline version. The Redline version is available in English only and provides you with a quick and easy way to compare all the changes between the official IEC Standard and its previous edition. IEC 60904-3:2019 describes basic measurement principles for determining the electrical output of PV devices. The principles given in this document are designed to relate the performance rating of PV devices to a common reference terrestrial solar spectral irradiance distribution. The reference terrestrial solar spectral irradiance distribution is given in this document in order to classify solar simulators according to the spectral performance requirements contained in IEC 60904-9. The principles contained in this standard cover testing in both natural and simulated sunlight. This new edition includes the following significant technical changes with respect to the previous edition: a) all spectral data were recalculated due to some minor calculation and rounding errors in the third edition; the global spectral irradiance returned to exactly the data of the second edition; b) the angular distribution of the irradiance was clarified.
Technology -
Technical committeeTypeAcronymIEC 60904-3CommitteePublished year2008KeywordsDescription
IEC 60904-3:2019 is available as IEC 60904-3:2019 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 60904-3:2019 describes basic measurement principles for determining the electrical output of PV devices. The principles given in this document are designed to relate the performance rating of PV devices to a common reference terrestrial solar spectral irradiance distribution. The reference terrestrial solar spectral irradiance distribution is given in this document in order to classify solar simulators according to the spectral performance requirements contained in IEC 60904-9. The principles contained in this standard cover testing in both natural and simulated sunlight. This new edition includes the following significant technical changes with respect to the previous edition:
a) all spectral data were recalculated due to some minor calculation and rounding errors in the third edition; the global spectral irradiance returned to exactly the data of the second edition;
b) the angular distribution of the irradiance was clarified. -
Technical committeeTypeAcronymIEC 60904-2:2015 RLVCommitteePublished year2015KeywordsDescription
IEC 60904-2:2015 RLV contains both the official IEC International Standard and its Redline version. The Redline version is available in English only and provides you with a quick and easy way to compare all the changes between the official IEC Standard and its previous edition. EC 60904-2:2015 gives requirements for the classification, selection, packaging, marking, calibration and care of photovoltaic reference devices. This standard covers photovoltaic reference devices used to determine the electrical performance of photovoltaic cells, modules and arrays under natural and simulated sunlight. The main technical changes with regard to the previous edition are as follows: - addition of a test procedure in simulated sunlight of subsequent measurement of primary and secondary reference device; - definition of standard test conditions; - reduction of allowed diffuse component for secondary reference cell calibration.
Technology -
Technical committeeTypeAcronymIEC 60904-2CommitteePublished year2007KeywordsDescription
IEC 60904-2:2015 is available as IEC 60904-2:2015 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 60904-2:2015 gives requirements for the classification, selection, packaging, marking, calibration and care of photovoltaic reference devices. This standard covers photovoltaic reference devices used to determine the electrical performance of photovoltaic cells, modules and arrays under natural and simulated sunlight. The main technical changes with regard to the previous edition are as follows:
- addition of a test procedure in simulated sunlight of subsequent measurement of primary and secondary reference device;
- definition of standard test conditions;
- reduction of allowed diffuse component for secondary reference cell calibration. -
Technical committeeTypeAcronymIEC 60904-1:2020CommitteePublished year2020KeywordsDescription
IEC 60904-1:2020 describes procedures for the measurement of current-voltage characteristics (I-V curves) of photovoltaic (PV) devices in natural or simulated sunlight. These procedures are applicable to a single PV solar cell, a sub-assembly of PV solar cells, or a PV module. This document is applicable to non-concentrating PV devices for use in terrestrial environments, with reference to (usually but not exclusively) the global reference spectral irradiance AM1.5 defined in IEC 60904-3. This third edition cancels and replaces the second edition published in 2006. The main changes with respect to the previous edition are as follows: - Updated scope to include all conditions. - Added terms and definitions. - Reorganised document to avoid unnecessary duplication. - Added data analysis clause. - Added informative annexes (area measurement, PV devices with capacitance, dark I-V curves and effect of spatial non-uniformity of irradiance).
Technology -
Technical committeeTypeAcronymIEC 60904-10:2020CommitteePublished year2020KeywordsDescription
IEC 60904-10:2020 describes the procedures used to measure the dependence of any electrical parameter (Y) of a photovoltaic (PV) device with respect to a test parameter (X) and to determine the degree at which this dependence is close to an ideal linear (straight-line) function. It also gives guidance on how to consider deviations from the ideal linear dependence and in general on how to deal with non-linearities of PV device electrical parameters. This third edition cancels and replaces the second edition published in 2009. This edition includes the following significant technical changes with respect to the previous edition: a. Modification of title. b. Inclusion of an Introduction explanatory of the changes and the reasoning behind them. c. Inclusion of a new Clause Terms and Definitions (Clause 3), with distinction between generic linear dependence and linear dependence of short-circuit current versus irradiance (linearity). d. Explicit definition of equivalent sample (Clause 4). e. Technical revision of the apparatus (Clause 5), of the measurement procedures (Clause 6 to Clause 8) and of the data analysis (Clause 9), with separation of the data analysis for a generic linear dependence from the data analysis specific to linearity (i.e. short-circuit current dependence on irradiance) assessment. Additionally, inclusion of impact of spectral effects on both linearity and linear dependence assessment. f. Introduction of specific data analysis for two-lamp method, making it fully quantitative. Addition of extended version called N-lamp method. g. Modification of the linearity assessment criterion with inclusion of a formula that can be used to correct the irradiance reading of a PV reference device for non-linearity of its short-circuit current versus irradiance. A linearity factor is specifically newly defined for this purpose. h. Revision of the requirements for the report (Clause 10) in order to improve clearness about what information is always necessary and what is dependent on the procedure actually followed to measure the linear dependence, including the type of dependence measured (generic or linearity).
Technology -
Technical committeeTypeAcronymIEC 60904-1-1:2017CommitteePublished year2017KeywordsDescription
IEC 60904-1-1:2017 describes procedures for the measurement of the current-voltage characteristics of multi-junction photovoltaic devices in natural or simulated sunlight. It is applicable to single PV cells, sub-assemblies of such cells or entire PV modules. It is principally intended for non-concentrating devices, but parts may be applicable also to concentrating multi-junction PV devices. An essential prerequisite is the spectral responsivity of the multi-junction devices, whose measurement is covered by IEC 60904-8-1.
Technology -
Technical committeeTypeAcronymIEC 60904-1CommitteePublished year2006KeywordsDescription
IEC 60904-1:2020 describes procedures for the measurement of current-voltage characteristics (I-V curves) of photovoltaic (PV) devices in natural or simulated sunlight. These procedures are applicable to a single PV solar cell, a sub-assembly of PV solar cells, or a PV module. This document is applicable to non-concentrating PV devices for use in terrestrial environments, with reference to (usually but not exclusively) the global reference spectral irradiance AM1.5 defined in IEC 60904-3.
This third edition cancels and replaces the second edition published in 2006. The main changes with respect to the previous edition are as follows:
- Updated scope to include all conditions.
- Added terms and definitions.
- Reorganised document to avoid unnecessary duplication.
- Added data analysis clause.
- Added informative annexes (area measurement, PV devices with capacitance, dark I-V curves and effect of spatial non-uniformity of irradiance).