Simulation and Control of Renewable COmbustion (SCIROCCO)

Project dates: 01. Oct 2019 - 30. Sep 2024

Objective

Most renewable energies can only be delivered intermittently. Without massive long-term storage capacities they will never provide 65 % of our energy mix by 2050, as required to limit global warming to 2°. Throughout this period and beyond, energy generation from combustion will remain a key component of this mix. SCIROCCO has two goals: (1) provide effective storage for renewable energies and (2) significantly improve existing combustion systems. Objective (1) is addressed by extending ‘Power to Gas (PtG)’ strategies, where excess electricity from renewable sources is converted into fuel, usually hydrogen (H2), which is easy to store over long periods and burn when power is needed. Objective (2) is addressed by burning the ‘renewable’ H2 in smart combustors with higher efficiencies and reduced emissions. Today, H2 is diluted in methane lines ('drop-in' strategy) to burn in existing devices. This strategy ignores the exceptional properties of H2, which burns and ignites faster than all other fuels. We will exploit these properties in new chambers that (1) burn H2 within a wide range of fossil fuel mixes and (2) use H2 as a powerful actuator to increase performance. Rather than diluting H2 in other fuels, we will inject H2 into the chamber separately. Research is needed to analyse the structure of these new dual-fuel flames that burn a fossil fuel and H2 simultaneously. This is a challenge for combustion science, requiring a re-think of chamber design and control. These fundamental issues will be addressed for two applications with fundamental societal impact: (1) laminar gas-burning flames (stoves, heaters) and (2) swirled liquid fuel turbulent flames (aerospace and power gas turbines). All cases will be studied experimentally (at IMFT) and numerically (with CERFACS simulation codes). SCIROCCO will develop fundamental knowledge on multi-fuel flames and have a direct societal impact as SCIROCCO burners will pave the way for smart combustors burning renewable H2

Partners

Number of partners: 2
Site numbers:

CERFACS CENTRE EUROPEEN DE RECHERCHE ET DE FORMATION AVANCEE EN CALCUL SCIENTIFIQUE SOCIETE CIVILE

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

Key Exploitable Results

  • TRL

  • Effective use:
  • Barriers:
  • Additional next steps:
  • Investment needed: