International cooperation for selective conversion of CO2 into METHAnol under SOLar light

Project dates: 01. Jul 2021 - 31. Dec 2024

Objective

Methanol is an appealing energy vectors, with attractive volumetric and gravimetric energy values, storable in liquid phase at ambient conditions of pressure and temperature, and that can be used as fuel directly or converted into chemicals or gasoline. However, its production lacks a sustainable route. Thus, the METHASOL project aims to produce methanol through a sustainable and cost-effective process based on the selective visible light driven gas phase CO2 reduction, with a solar to methanol energy conversion efficiency of 5%. During 42 months, METHASOL will gather 14 partners from EU/Associated MS, China and the USA, including some of the world’s most recognized researchers on artificial photosynthesis, to achieve a ground-breaking combination of a CO2 reduction reaction (CO2RR) system based on Metal-Organic Framework (MOF) and a graphitic Carbon Nitride (g-CN) for photocatalytic oxygen evolution reaction (OER), through a Z-scheme heterojunction. Following the definition of the system specifications (WP1), a first set of materials for OER and CO2RR will be synthesised and their photocatalytic activity and stability will be screened (WP2). The most promising materials will be further analysed thanks to experimental characterisation and modelling (WP3), leading to guidelines used for designing an enhanced CO2RR and OER materials (WP4). The best systems will then be integrated through a Z-scheme heterojunction, either with or without a mediator, and tested in tailored reactors operating in the gas phase under different conditions (WP5). A complete sustainability analysis will be conducted (WP6) to ensure the clean production of methanol. The cooperation between European and Chinese research entities will be consolidated to last beyond the project lifetime through the creation of a common exploitation plan (WP7). Through its ambitious activities on photocatalyst developments for solar to methanol conversion, METHASOL will propose a new path for decarbonizing Europe.

Partners

Number of partners: 17
Site numbers:

FUZHOU UNIVERSITY

METHANOL INSTITUTE

NANKAI UNIVERSITY

UNIVERSITE DE MONTPELLIER

Wuhan University of Technology

UNIVERSITEIT MAASTRICHT

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

ECOLE NORMALE SUPERIEURE

DALIAN INSTITUTE OF CHEMICAL PHYSICS CHINESE ACADEMY OF SCIENCES

UNIVERSITE DE CAEN NORMANDIE

UNIVERSITAT POLITECNICA DE VALENCIA

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

EUROQUALITY SARL

UNIVERSITE DE VERSAILLES SAINT-QUENTIN-EN-YVELINES.

Research & Innovation

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE

Key Exploitable Results

  • TRL

  • Effective use:
  • Barriers:
  • Additional next steps:
  • Investment needed: