Design

Design

  • English
    Technical committee
    Type
    Acronym
    IEC 61400-6:2020
    Committee
    Published year
    2020
    Description

    IEC 61400-6:2020 specifies requirements and general principles to be used in assessing the structural integrity of onshore wind turbine support structures (including foundations). The scope includes the geotechnical assessment of the soil for generic or site specific purposes. The strength of any flange and connection system connected to the rotor nacelle assembly (including connection to the yaw bearing) are designed and documented according to this document or according to IEC 61400-1. The scope includes all life cycle issues that may affect the structural integrity such as assembly and maintenance. The contents of the corrigendum of November 2020 have been included in this copy.

    Technology
  • English
    Technical committee
    Type
    Acronym
    IEC 61400-4:2012
    Committee
    Published year
    2012
    Description

    IEC 61400-4:2012 is applicable to enclosed speed increasing gearboxes for horizontal axis wind turbine drivetrains with a power rating in excess of 500 kW. This standard applies to wind turbines installed onshore or offshore. It provides guidance on the analysis of the wind turbine loads in relation to the design of the gear and gearbox elements. The gearing elements covered by this standard include such gears as spur, helical or double helical and their combinations in parallel and epicyclic arrangements in the main power path. The standard is based on gearbox designs using rolling element bearings. Also included is guidance on the engineering of shafts, shaft hub interfaces, bearings and the gear case structure in the development of a fully integrated design that meets the rigours of the operating conditions. Lubrication of the transmission is covered along with prototype and production testing. Finally, guidance is provided on the operation and maintenance of the gearbox.

    Technology
  • English
    Technical committee
    Type
    Acronym
    IEC 61400-3-1:2019
    Committee
    Published year
    2019
    Description

    IEC 61400-3-1:2019 outlines the minimum design requirements for fixed offshore wind turbines and is not intended for use as a complete design specification or instruction manual. Several different parties may be responsible for undertaking the various elements of the design, manufacture, assembly, installation, erection, commissioning, operation and maintenance of an offshore wind turbine and for ensuring that the requirements of this document are met. The division of responsibility between these parties is a contractual matter and is outside the scope of this document. This edition cancels and replaces the first edition of IEC 61400-3 published in 2009. This edition includes the following significant technical changes with respect to the first edition of IEC 61400-3: a) The design load table has been revised to simplify the approach to waves, both for several gust cases with the Normal Sea State, and for a number of cases with the Extreme Sea State. The guidance for load calculations has been altered accordingly; c) For load safety factors reference is now made directly to IEC 61400-1; d) Control system has been aligned with the latest updates in IEC 61400-1; e) Wave spectra has been replaced by a reference to ISO 19901-1; f) The annex on ice loading has been revised and updated; g) Two informative annexes concerning tropical cyclones have been introduced; h) Other parts of the text have been aligned with IEC 61400-1

    Technology
  • English
    Technical committee
    Type
    Acronym
    IEC 61400-1:2019 RLV
    Committee
    Published year
    2019
    Description

    IEC 61400-1:2019 RLV contains both the official IEC International Standard and its Redline version. The Redline version is available in English only and provides you with a quick and easy way to compare all the changes between the official IEC Standard and its previous edition. IEC 61400-1:2019 specifies essential design requirements to ensure the structural integrity of wind turbines. Its purpose is to provide an appropriate level of protection against damage from all hazards during the planned lifetime. This document is concerned with all subsystems of wind turbines such as control and protection functions, internal electrical systems, mechanical systems and support structures.  This document applies to wind turbines of all sizes. For small wind turbines, IEC 61400-2 can be applied. IEC 61400-3-1 provides additional requirements to offshore wind turbine installations. This document is intended to be used together with the appropriate IEC and ISO standards mentioned in Clause 2. This edition includes the following significant technical changes with respect to the previous edition: a) general update and clarification of references and requirements; b) extension of wind turbine classes to allow for tropical cyclones and high turbulence; c) Weibull distribution of turbulence standard deviation for normal turbulence model (NTM); d) updated design load cases (DLCs), in particular DLC 2.1 and 2.2; e) revision of partial safety factor specifications The contents of the corrigendum of September 2019 have been included in this copy.

    Technology
  • English
    Technical committee
    Type
    Acronym
    IEC 61215-2:2021 RLV
    Committee
    Published year
    2021
    Description

    IEC 61215-2:2021 RLV contains both the official IEC International Standard and its Redline version. The Redline version is available in English only and provides you with a quick and easy way to compare all the changes between the official IEC Standard and its previous edition. IEC 61215-2:2021 lays down requirements for the design qualification of terrestrial photovoltaic modules suitable for long-term operation in open-air climates. This document is intended to apply to all terrestrial flat plate module materials such as crystalline silicon module types as well as thin-film modules. The objective of this test sequence is to determine the electrical characteristics of the module and to show, as far as possible within reasonable constraints of cost and time, that the module is capable of withstanding prolonged exposure outdoors. This second edition of IEC 61215-2 cancels and replaces the first edition of IEC 61215-2 issued in 2016. This edition includes the following significant technical changes with respect to the previous edition: a. Addition of cyclic (dynamic) mechanical load testing (MQT 20). b. Addition of a test for detection of potential-induced degradation (MQT 21). c. Addition of test methods required for bifacial PV modules. d. Addition of test methods required for flexible modules. This includes the addition of the bending test (MQT 22). e. Revision of simulator requirements to ensure uncertainty is both well-defined and minimized. f. Correction to the hot spot endurance test, where the procedure for monolithically integrated (MLI) thin film technologies (MQT 09.2) previously included two sections describing a procedure only appropriate for silicon modules. g. Selection of three diodes, rather than all, for testing in the bypass diode thermal test (MQT 18). h. Removal of the nominal module operating test (NMOT), and associated test of performance at NMOT, from the IEC 61215 series.

  • English
    Technical committee
    Type
    Acronym
    IEC 61215-1:2021 RLV
    Committee
    Published year
    2021
    Description

    IEC 61215-1:2021 RLV contains both the official IEC International Standard and its Redline version. The Redline version is available in English only and provides you with a quick and easy way to compare all the changes between the official IEC Standard and its previous edition. IEC 61215-1:2021 lays down requirements for the design qualification of terrestrial photovoltaic modules suitable for long-term operation in open-air climates. The useful service life of modules so qualified will depend on their design, their environment and the conditions under which they are operated. Test results are not construed as a quantitative prediction of module lifetime. This document is intended to apply to all terrestrial flat plate module materials such as crystalline silicon module types as well as thin-film modules. It does not apply to systems that are not long-term applications, such as flexible modules installed in awnings or tenting. This second edition of IEC 61215-1 cancels and replaces the first edition of IEC 61215-1, published in 2016. This edition includes the following significant technical changes with respect to the previous edition: a. Addition of a test taken from IEC TS 62782. b. Addition of a test taken from IEC TS 62804-1. c. Addition of test methods required for flexible modules. This includes the addition of the bending test (MQT 22). d. Addition of definitions, references and instructions on how to perform the IEC 61215 design qualification and type approval on bifacial PV modules. e. Clarification of the requirements related to power output measurements. f. Addition of weights to junction box during 200 thermal cycles. g. Requirement that retesting be performed according to IEC TS 62915. h. Removal of the nominal module operating test (NMOT), and associated test of performance at NMOT, from the IEC 61215 series.

  • English
    Technical committee
    Type
    Acronym
    IEC 61215-1-4:2021 RLV
    Committee
    Published year
    2021
    Description

    IEC 61215-1-4:2021 RLV contains both the official IEC International Standard and its Redline version. The Redline version is available in English only and provides you with a quick and easy way to compare all the changes between the official IEC Standard and its previous edition. IEC 61215-1-4:2021 lays down requirements for the design qualification of terrestrial photovoltaic modules suitable for long-term operation in open-air climates. The useful service life of modules so qualified will depend on their design, their environment and the conditions under which they are operated. Test results are not construed as a quantitative prediction of module lifetime. This document is intended to apply to all thin-film Cu(In,Ga)(S,Se)2 based terrestrial flat plate modules. As such it addresses special requirements for testing of this technology supplementing IEC 61215-1:2021 and IEC 61215-2:2021 requirements for testing. This second edition cancels and replaces the first edition of IEC 61215-1-4, issued in 2016. This edition includes the following significant technical changes with respect to the previous edition: a. A cyclic (dynamic) mechanical load test (MQT 20) added. b. A test for detection of potential-induced degradation (MQT 21) added. c. A bending test (MQT 22) for flexible modules added. This standard is to be read in conjunction with IEC 61215-1:2021 and IEC 61215-2:2021

  • English
    Technical committee
    Type
    Acronym
    IEC 61215-1-3:2021 RLV
    Committee
    Published year
    2021
    Description

    IEC 61215-1-3:2021 RLV contains both the official IEC International Standard and its Redline version. The Redline version is available in English only and provides you with a quick and easy way to compare all the changes between the official IEC Standard and its previous edition. IEC 61215-1-3:2021 lays down requirements for the design qualification of terrestrial photovoltaic modules suitable for long-term operation in open-air climates. The useful service life of modules so qualified will depend on their design, their environment and the conditions under which they are operated. Test results are not construed as a quantitative prediction of module lifetime. This document is intended to apply to all thin-film amorphous silicon (a-Si; a-Si/µc-Si) based terrestrial flat plate modules. As such, it addresses special requirements for testing of this technology supplementing IEC 61215-1:2021 and IEC 61215-2:2021 requirements for testing. This second edition cancels and replaces the first edition of IEC 61215-1-3, issued in 2016. This edition includes the following significant technical changes with respect to the previous edition: a. A cyclic (dynamic) mechanical load test (MQT 20) added. b. A test for detection of potential-induced degradation (MQT 21) added. c. A bending test (MQT 22) for flexible modules.

  • English
    Technical committee
    Type
    Acronym
    IEC 61215-1-2:2021 RLV
    Committee
    Published year
    2021
    Description

    IEC 61215-1-2:2021 RLV contains both the official IEC International Standard and its Redline version. The Redline version is available in English only and provides you with a quick and easy way to compare all the changes between the official IEC Standard and its previous edition. IEC 61215-1-2:2021 lays down requirements for the design qualification of terrestrial photovoltaic modules suitable for long-term operation in open-air climates. The useful service life of modules so qualified will depend on their design, their environment and the conditions under which they are operated. Test results are not construed as a quantitative prediction of module lifetime. This document is intended to apply to all thin-film CdTe based terrestrial flat plate modules. As such, it addresses special requirements for testing of this technology supplementing IEC 61215-1:2021 and IEC 61215-2:2021 requirements for testing. This document defines PV technology dependent modifications to the testing procedures and requirements per IEC 61215-1:2021 and IEC 61215-2:2021. This second edition cancels and replaces the first edition of IEC 61215-1-2, issued in 2016. This edition includes the following significant technical changes with respect to the previous edition: a. A cyclic (dynamic) mechanical load test (MQT 20) added. b. A test for detection of potential-induced degradation (MQT 21) added. c. A bending test (MQT 22) for flexible modules added.

  • English
    Technical committee
    Type
    Acronym
    IEC 61215-1-1:2021 RLV
    Committee
    Published year
    2021
    Description

    IEC 61215-1-1:2021 RLV contains both the official IEC International Standard and its Redline version. The Redline version is available in English only and provides you with a quick and easy way to compare all the changes between the official IEC Standard and its previous edition. IEC 61215-1-1:2021 lays down requirements for the design qualification of terrestrial photovoltaic modules suitable for long-term operation in open-air climates. The useful service life of modules so qualified will depend on their design, their environment and the conditions under which they are operated. Test results are not construed as a quantitative prediction of module lifetime. In climates where 98th percentile operating temperatures exceed 70 °C, users are recommended to consider testing to higher temperature test conditions as described in IEC TS 63126. This document is intended to apply to all crystalline silicon terrestrial flat plate modules. This second edition cancels and replaces the first edition of IEC 61215-1-1, issued in 2016. This edition includes the following significant technical changes with respect to the previous edition: a. A cyclic (dynamic) mechanical load test (MQT 20) added. b. A test for detection of potential-induced degradation (MQT 21) added. c. A bending test (MQT 22) for flexible modules added. d. A procedure for stress specific stabilization – BO LID (MQT 19.3) added. e. A final stabilization procedure for modules undergoing PID testing added