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This article analyses in technical terms the application of battery-based storage systems for household-
demand smoothening in electricity-distribution grids. The analysis includes case studies of Denmark,
Portugal, Greece, France and Italy. A high penetration of photovoltaic systems in distribution grids is con-
sidered as an additional scenario. A sensitivity analysis is performed in order to examine the smoothening
effect of daily demand profiles for different configurations of the battery system.

In general, battery-storage systems with low rated power and low battery capacity can smooth the
demand sufficiently with the aid of a simple management process. For example, with 1 kW of peak
demand, a 30–45% decrease in the variability of the daily demand profile can be achieved with a battery
system of 0.1 kW rated power and up to 0.6 kW h battery capacity. However, further smoothening
requires higher battery-system capacity and power. In this case, more elaborate management is also
needed to use the battery system efficiently.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The need for energy-storage systems was identified in the Euro-
pean energy infrastructure priorities for 2020 and beyond [1]. Stor-
age technologies can bring additional flexibility to energy systems,
an essential prerequisite for high penetration of stochastically var-
iable renewable energy sources (RESs) [2]. Implementing proper
storage topologies, such as centralised or semi-centralised facili-
ties, becomes a challenge. Besides, operating these facilities poses
an additional challenge. Alongside pumped hydro storage, only a
few large-scale compressed-air energy-storage installations are
currently undergoing trials. Other alternatives could be storage
allocation further down the grid chain at distribution level.

This article analyses this alternative; however, the focus is not
on direct damping of power variations from uncontrollable RES
but on smoothening household demand2 with the aid of battery-
based3 storage systems. Demand smoothening is the process by
which the daily demand variations are reduced. It is achieved by
charging the battery during valley demand and discharging it during
the peak demand. The main technical benefits of such demand
smoothening in distribution grids are as follows:
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� Decreased peak demand and increased valley demand.
� Increased capacity factor of distribution-system corridors.
� Increased security of energy supply, since batteries can act as an

additional and independent power supply.

The first two benefits could lead to a simplification in the man-
agement of electricity corridors, e.g. smoothened demand could re-
sult in fewer voltage variations and, as a consequence, less stress
on the system, such as automation in the distribution transformer.
Moreover, increasing the capacity factor of electricity corridors
would lead to an increase in the overall utilisation of conventional
power generators, resulting in higher generation efficiency.

Despite the fact that battery-system applications in demand
smoothening in distribution grids are already used commercially
in Europe, Japan and USA [3], they have not been the subject of a
recent and extensive study. Several studies have addressed the
broader issue [4–9]. Castillo-Cagigal et al. [4] and Tan et al. [5]
studied the use of batteries in demand smoothening in distribution
grids with photovoltaic (PV) installations. In the latter study, the
focus was on the battery system itself as an uninterruptible power
supply. Papic [6] described installed battery-system applications
for peak-demand shaving in factories only in critical situations
when peak demand exceeds the peak power of the distribution
transformer. Thus the battery system was used to avoid uprating
the transformer. Nourai et al. [7] looked at reducing transmission
and distribution grid losses due to peak-demand reduction; how-
ever here the battery systems also increased the overall demand
due to losses in the storage–generation process. Bingying et al.
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[8] focused on ‘flow battery’ systems. Koutsopoulos and Tassiulas
[9] stressed that the main driver of such applications at household
level could be benefits due to elastic electricity prices in charging/
discharging operations and benefits at distribution-grid level due
to minimising operation costs.

The literature [5] uses a stochastic method to measure the ef-
fect of the battery system capacity in demand smoothening but
does not take into account the power of the battery system. Older
studies on battery-system applications for demand smoothening
are described in a literature review by Divya and Østergaard
[3], where they pointed out that most of the studies reviewed
lack suggestions on optimal battery capacity and battery system
rated power.

The role of electric vehicles in demand smoothening is widely
studied in [10–12], pointing out that electric-vehicle batteries
could participate in peak-demand reduction. However, demand
smoothening is not the aim of the electric-vehicle application.
Although the EU technology roadmap [13] expects a large number
of electric vehicles to be integrated in the electricity grid by 2020,
this is not an aspect covered in this article.

Given this gap in the literature, this article seeks to analyse and
measure two technical indicators – battery capacity and battery-
system rated power – in direct applications targeting household-
demand smoothening with and without PV penetration. The anal-
ysis is performed for Denmark, Portugal, Greece, France and Italy.
In addition, this article proposes and analyses two battery-system
management models: a time-dependent management model for a
simple battery system and a demand-tracking management model
for a more highly developed battery system.

This article is structured as follows: Section 2 presents demand
scenarios, including PV generation. Section 3 describes the battery-
based storage system and management models. Section 4 presents
Fig. 1. Representative average daily household-dem

Fig. 2. Representative average daily PV generation profiles and household-d
and discusses the main results. The last section sets out the conclu-
sions of the analysis.
2. Scenarios regarding demand and PV penetration

The subject of this article is smoothening household demand.
Thus it should begin by defining household-consumption profiles.
These profiles can differ from country to country according to var-
ious parameters, mostly ambient and socio-economic conditions.
Moreover, household consumption may appear to vary from day
to day, depending on the day (weekday, weekend or special holi-
day) and the season. In order to simplify our study, a detailed daily
household profile is considered to be beyond the scope of this arti-
cle. Representative average daily demand profiles per season are
used.

In order to apply realistic household-consumption profiles, the
REMODECE database [14] is used. This database provides invento-
ries of daily household-demand profiles at hourly intervals. These
profiles cover all the months throughout the inventory year. All
the available demand profiles were processed for the countries
studied: 189 daily demand profiles in Denmark, 95 in Portugal,
192 in Greece, 106 in Italy and 207 in France. For each country,
these profiles were allocated to four seasons: winter, spring, sum-
mer and autumn. For each season, an average daily demand profile
was calculated, i.e. an average profile of 24 records for each season.

Representative average daily-demand profiles for Denmark and
Portugal are depicted in Figs. 1 and 2. Here the season with the
highest demand variations (found in spring in Denmark and in
winter in Portugal) and with the lowest demand variations (found
in summer in Denmark and in autumn in Portugal) are presented.
Demand variability is measured as the standard deviation. The
and profiles in spring and summer in Denmark.

emand profiles in winter and autumn in Portugal with and without PV.



Table 1
Main demand parameters for the countries studied.

Country PV Highest peak demand – base unit Demand variations (Eq. (1))

W Season Highest Lowest

pu Season pu Season

Denmark No 895 Spring 0.199 Spring 0.141 Summer
Portugal No 920 Winter 0.186 Winter 0.093 Autumn

Yes 920 Winter 0.213 Spring 0.151 Autumn
Greece No 831 Autumn 0.208 Autumn 0.114 Summer

Yes 831 Autumn 0.230 Autumn 0.167 Summer
France No 2025 Winter 0.117 Winter 0.073 Autumn

Yes 2025 Winter 0.125 Winter 0.071 Autumn
Italy No 759 Winter 0.230 Winter 0.146 Summer

Yes 759 Winter 0.229 Winter 0.172 Autumn
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standard deviation indicates how far the daily demand profile’s
values deviate from the mean value and is calculated as follows:

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðxi � xmeanÞ2

N � 1

s
ð1Þ

where N is the hours in day, xi is the value of the hourly demand and
xmean is the mean daily demand value.

The representative values of demand profiles in Figs. 1 and 2 are
expressed in a per unit (pu) system, i.e. as a fraction of a defined
base unit. Each country has its own pu system. The base unit for
each country is defined by the value of the highest demand among
the average daily demand profiles in all the seasons of the country
concerned (Table 1). For example, for Denmark this value is 895 W
and is found in the spring profile where the demand is highest
(Fig. 1). Consequently, the summer peak demand was calculated
to be 0.71 pu. For Portugal, the winter peak demand of 920 W de-
fines the base unit, 1 pu, thus the autumn peak demand is 0.63 pu
(Fig. 2).

The highest and the lowest variations of the daily demand pro-
files among the seasons of all the countries studied are listed in Ta-
ble 1. France among the other countries studied characterises with
the lowest demand variations throughout the year having the max-
imum demand variations of 0.117 (without PV) in winter. Besides
the other countries have their maximum demand variations in a
range from 0.186 to 0.230 (without PV), which is much higher.

Furthermore, increased distributed generation (DG) changes the
demand seen from the feeder side, since a portion of the household
demand can be met locally. When it comes to the distribution-fee-
der level which supplies household consumers, the most common
RES is solar PV. In line with the RES projections in national energy
action plans for 2020 [15], annual PV production in Portugal,
Greece, France and Italy is expected to be in a range from 108 to
321 kW h per capita. Accordingly, additional scenarios with high
PV penetration in Portugal, Greece, France and Italy are examined.
However, the planned PV integration in Demark for 2020 (1 kW h
per capita) is not sufficient to warrant conducting a study.

For Portugal, PV penetration is assumed to be 25% of the distri-
bution-transformer capacity [16]. Here, in order to express PV gen-
eration in the same per unit system as demand, some assumptions
need to be made regarding the distribution corridor. Thus a con-
ventional distribution-transformer capacity of 250 kV A is consid-
ered. 25% of this capacity would be equal to the PV installed
capacity, which is in absolute values 62.5 kWp. Furthermore, for
the chosen transformer, an ACSR line of 35 mm2 is assumed. This
line has a thermal current limit of 224 A and a 154.56 kV A
three-phase capacity. The chosen line then is considered to be at
maximum load. The winter demand profile in Portugal is levelled
out so that the peak reaches the maximum line capacity, i.e.
154.56 kV A. As the PV installed capacity and the peak winter
demand are known, the installed PV capacity can be calculated to
be 0.4 pu. The PV penetration limits in the distribution network
in Greece, France and Italy are not clearly defined; therefore, in
these countries the same PV penetration assumptions as in Portu-
gal were considered.

PV does not operate at peak power continuously so the seasonal
average of the daily PV power peak is much lower. For each coun-
try and for each season in our study, an average daily PV profile
was calculated using 2010 statistical data obtained from the Euro-
pean solar-radiation database [17]. As an example, in Portugal the
average daily PV peak is 0.16 pu in winter and 0.23 pu in autumn
(Fig. 2). PV penetration increases the demand variability in the
most of the cases presented in Table 1. Only in autumn in France
and in winter in Italy demand is slightly smoothened due to the
PV integration. Besides in Portugal due to the PV penetration the
highest demand variations presented before in winter appear
now appear in spring (Table 1). Nevertheless, the peak demand is
not affected by the PV penetration in the countries studied.

3. Battery-based energy storage

The most promising energy-storage system for household-de-
mand smoothening is considered to be battery-based. Other stor-
age technologies at distribution-grid level, such as flywheels,
super-capacitors and superconducting magnetic energy storage
are designed mainly for peak-power supply/storage [18]. Hydro-
gen-based energy-storage systems could also be an alternative to
batteries but, due to their relatively high cost and low energy-stor-
age efficiency compared to batteries, take-up has not been exten-
sive [18]. Moreover, batteries are conventional technologies
widely used in commercial applications. Their modularity [3]
makes them easily applicable to installations either at household
or at distribution-feeder level.

3.1. Technical parameters of the battery system

The battery system for energy-storage purposes in the electric-
ity grid consists of the battery itself and a bidirectional electrical-
power converter (Fig. 3). When the battery operates in energy-
storage mode, a power converter converts the AC grid power into
the appropriate DC form. When the battery operates in generation
mode, the DC battery output is converted back to the AC grid
power.

The quantity of energy that can be stored is defined by the bat-
tery capacity. In this article, the term battery capacity implies the
amount of energy that can be drawn from a fully charged battery.
Since batteries are typically a modular technology, the required
capacity can be reached by connecting battery cells in series and/
or in parallel. So, theoretically, it can be assumed that there are
no constraints on the capacity of the battery system. A sensitivity



Fig. 3. Battery-based energy storage system in electricity grid.

START

CALCULATE Paver

i ≤ 24

Egen = 0
Estor = 0

i = 1
Ref = Ref + Step

pi Ref > 0

yes

no

Egen = Egen + pi Ref

Estor = Estor + |pi

i = i + 1

no

yes

Ref = Paver

READ Demand = [pi]i = 1,…,24, η, Step

−

−

−

A. Purvins et al. / Energy Conversion and Management 65 (2013) 272–284 275
analysis of various battery-system capacities was carried out to
study battery application in demand smoothening in distribution
grids. The capacities examined increase to the point where further
capacity increases do not yield further smoothening effects.

Another technical parameter is the battery system’s rated
power, which is the maximum rating of the charging/discharging
power of the battery system. This indicates how fast energy can
be stored (or generated) in the battery system. Even if the battery
has enough capacity to store energy at valley demand (or generate
at peak demand), the rated power should be high enough to enable
the required energy flow (inwards or outwards) in time. Theoreti-
cally, there are no constraints on the power rating values resulting
from either the electrical power converters, or the battery itself.
Thus the sensitivity analysis is carried out on various battery sys-
tem rated-power values considered to range from zero to the value
that does not yield further demand smoothening.

As this is an energy-conversion process, losses in the battery
system should be considered. In a battery, losses are due to the
conversion of electrical energy into chemical energy in order to
be stored and back to electrical energy when it is needed. The effi-
ciency of this process in batteries (electrical–chemical–electrical)
varies from 50% to over 95%, depending on the technology
[3,19,20]. In this article, battery efficiency (gbattery) is considered
to be 85%, which is a rough average between widely used lead-acid
and promising lithium ion batteries. For the sake of simplicity, en-
ergy losses in the battery are considered to occur only during elec-
trical–chemical conversion.

The electrical-power converter causes additional losses in the
conversion process. According to Qian et al. [20] the efficiency of
electrical-power conversions is calculated to be 95% in both the
DC/AC (gDC/AC) and AC/DC (gAC/DC) steps. Accordingly, the total effi-
ciency of the storage–generation cycle of the battery system is
equal to

g ¼ gAC=DC � gbattery � gDC=AC ¼ 0:95 � 0:85 � 0:95 ¼ 0:77 ð2Þ

Hence, operating the battery in charging mode requires more
energy than in discharging mode due to losses in energy
conversion.
Egen /Estor < η

END

yes

no

Ref

Fig. 4. Flowchart for calculating the reference value.
3.2. Methodology

The distributed energy-storage system is managed in order to
decrease peak values and increase valley values in the house-
hold-demand profile or at any other point along the distribution
grid after the step-down transformer that involves an aggregation
of power demands.
This subsection proposes two battery-system management
models for demand smoothening. The purpose of these models is
to calculate in advance the smoothened profile of the daily demand
for a specific battery system. The battery system is then managed
in accordance with this smoothened profile, providing the maxi-
mum possible smoothening. The first model is time-dependent
and designed for a relatively simple battery system operating at
constant (rated) power. The second is a demand-tracking model
for a more complex battery system that operates at variable power
and is therefore more flexible. Both battery-system-management
models are set out in MS Excel Visual Basic computer language.

Before the demand smoothening process, a reference value (Ref)
is calculated, which is used as the input data for both management
models. This value is a fully smoothened demand. The flowchart
for its calculation is presented in Fig. 4. The input parameters are
the daily demand profile at hourly intervals (Demand = [pi]1�24),
the battery-system efficiency (g) and the calculation step (Step).
The latter determines the calculation accuracy. The smaller the
Step, the more precise is the calculated value. Here the battery
capacity and the rated power of the battery system are assumed
to be unlimited. At the beginning, the average demand (Paver) is cal-
culated and the initial reference value (Ref) is set equal to it. Then
gradually Ref is increased by Step until the ratio of energy outflow
(Egen) to inflow (Estor) (from/to the battery system) in the whole day
is equal to g. Thus the reference value obtained is slightly higher
than the average value of the demand profile, due to the losses
in the energy-conversion process.
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Fig. 5. Flowchart of the common part of the time-dependent and demand-tracking
battery system management models (part 1 of 2).
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After the reference value (Ref) is obtained, the smoothened de-
mand profile for both management models is calculated as pre-
sented in flowcharts in Figs. 5–7. For reasons of simplicity, the
common part of both models is shown in a single flowchart,
Fig. 5. For their part, Figs. 6 and 7 show the flowcharts of the un-
ique parts of the time-dependent and demand-tracking models
respectively.

Following Fig. 5, the input data for both models are the daily de-
mand profile with hourly intervals (Demand = [pi]1�24), the rated
power of the battery system (Prated), the battery capacity (C), charg-
ing–discharging losses in battery (gbattery), losses in both AC/DC
(gAC/DC) and DC/AC (gDC/AC) electrical-power conversion processes,
the initial state of charge of the battery (qinitial), a reference value
(Ref) and a calculation step (Step).

At the beginning, both models form three data matrices:
Charge = [ck.m]2�24, Discharge = [dn.u]2�24 and Q = [qr]1�24. Then all
entries in the Charge and Discharge matrices are initially set to zero
and all entries in the Q matrix are equated to qinitial. The entries in
the Charge and Discharge matrices at the end of the smoothening
will contain the smoothened demand data. The battery’s state of
charge for any hour of the day during the smoothening process will
be registered in the Q matrix. As an example the Demand matrix
and the initial entries in Q, Charge and Discharge matrices for the
representative average daily household-demand profile in spring
in Denmark are presented in Table 2. The Demand matrix contains
daily household-demand profile previously presented in Fig. 1. In
the Q matrix all the entries are set to zero, which is the initial bat-
tery’s state of charge. Zero (0) in the Q matrix indicates that battery
is empty and one (1) indicates that battery is fully charged. The ini-
tial state of charge is calculated according to the daily demand pro-
file. Thus the battery at the beginning of the day in Denmark is
considered to be empty, due to valley demand in the first hours
of the day. At that time, the battery is charged in order to smooth
demand. Furthermore, in the flowchart the battery operation mode
is determined for each hour according to the reference value. For
the example this value is 0.54. If the demand value (pi) is lower
than Ref (during hours from 1 to 16, Table 2), then it is recorded
in the Charge matrix along with the respective hour i. Similarly
the demand and time values are stored in the Discharge matrix
when the demand is higher than Ref (during hours from 17 to 24,
Table 2). When demand values have been allocated to all 24 h,
the quantity of records is registered for both matrices: Nch for the
Charge matrix and Ndisch for the Discharge matrix (16 and 8 respec-
tively, Table 2).

It is assumed that the battery’s state of charge is the same at the
end of the day as it was at the beginning. This assumption is based
on the fact that daily demand profiles are approximately similar
from one day to another. So, if for an efficient demand smoothen-
ing the battery’s state of charge should be empty at the beginning
of the day, then this should be its state of charge at the beginning
of every day. The change of day occurs at 0 am.

Battery-system parameters (battery capacity and battery sys-
tem rated power) in this article are expressed in the per unit
(pu) system. The base units are different for each country (Table 1).
For example, using a battery system with a capacity of 0.2 h pu and
battery-system rated power of 0.1 pu in Denmark, and knowing
that the highest demand among the average seasonal profiles is
895 W in spring, the absolute values of the battery system are
179 W h (895 W � 0.2 h) for battery capacity and 90 W (90 W�0.1)
for the battery system’s rated power. Similar calculations were
conducted for all the other countries studied.
3.2.1. Time-dependent battery-system-management model
This subsection presents the unique part of the time-dependent

model. As noted above, this unique part presented in Fig. 6 takes as
an input the output of the flowchart in Fig. 5. In Fig. 6, the two
matrices Charge and Discharge are initially arranged in descending
order. Then the calculation continues with demand smoothening:
peak demand is decreased and valley demand is increased with
the aid of the battery system. The battery state of charge changes
accordingly. Every demand decrease is registered in the Discharge
matrix as the demand value is decreased by Step � g (calculation
step multiplied by the battery-system efficiency). The battery state
of charge (qr) is decreased by Step/gDC/AC for the hours of the day
which cover the hour of this demand and beyond. This represents
the discharging of the battery during this demand hour. Respec-
tively every demand increase is registered in the Charge matrix
as the demand value is increased by Step. The battery state of
charge (qr) is now increased for this hour and beyond by Step � gAC/-
DC
� gbattery, representing the charging of the battery. After this

smoothening, the battery’s state of charge and the smoothened de-
mand values are checked. The smoothening cycle repeats in the
same way for the same entries in the Discharge and Charge matrices
given the following conditions:

1. The battery’s state of charge (qr) is in the limits for any hour (i.e.
0 6 qr 6 C).

2. The power reduction through discharging (pi � d1.u) does not
exceed the Prated in the hours of smoothening.

3. The power increase through charging (c1.m � pi) does not
exceed the Prated in the hours of smoothening.
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Fig. 6. Flowchart of the time-dependent battery system management model (part 2 of 2).
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However, if the first condition is not met, then the changes
performed in the last smoothening cycle involving the Charge
matrix and consequently the relevant entries in the Q matrix
are cancelled. Then all the non-zero entries in the Charge matrix
(c1.m) starting from the smallest are checked successively if the
above condition can be met. The smoothening continues for
the specific value at which the condition is met. If the first
condition cannot be satisfied for any entry in the Charge matrix,
then changes performed in the last smoothening cycle involving
the Discharge matrix and consequently the relevant entries in the
Q matrix are also cancelled. The smoothening then starts over
but for the next non-zero entry in the Discharge matrix, i.e. the
next highest demand (d1.u). For any smoothening step, the condi-
tions 2 and 3 are also checked. If not met, then the smoothening
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Fig. 7. Flowchart of the demand-tracking battery system management model (part 2 of 2).
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continues of the next entry of the subject matrix (Charge or
Discharge).

The smoothening is completed when all the possible smoothen-
ing combinations of the Charge and Discharge matrices have been
examined and further smoothening is not possible while contin-
uing to fulfil the above three conditions. The final values of the en-
tries in the Charge, Discharge and Q matrices for the representative
example (spring in Denmark) are listed in Table 3. The battery



Table 2
The Demand matrix and the initial entries in Q, Charge and Discharge matrices for the representative average daily household-demand profile in spring in Denmark.

Entries (i, r, m, u) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Demand, pi 0.38 0.31 0.27 0.25 0.25 0.30 0.36 0.45 0.48 0.50 0.52 0.53 0.51 0.51 0.48 0.51 0.55 0.81 1.00 0.82 0.77 0.73 0.69 0.54
Q, qr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Charge, c1.m 0.38 0.31 0.27 0.25 0.25 0.30 0.36 0.45 0.48 0.50 0.52 0.53 0.51 0.51 0.48 0.51 0 0 0 0 0 0 0 0
Charge, c2.m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 0 0 0 0 0 0 0
Discharge, d1.u 0.55 0.81 1.00 0.82 0.77 0.73 0.69 0.54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Discharge, d2.u 17 18 19 20 21 22 23 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3
The final entries in the Q, Charge and Discharge matrices using the time-dependent battery system management for the representative average daily household-demand profile in
spring in Denmark.

Entries (r, m, u) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Q, qr 0.00 0.00 0.20 0.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.48 0.00 0.00 0.00 0.00 0.00
Charge, c1.m 0.53 0.52 0.51 0.51 0.51 0.50 0.48 0.48 0.45 0.38 0.36 0.31 0.30 0.36 0.45 0.45 0 0 0 0 0 0 0 0
Charge, c2.m 12 11 13 14 16 10 9 15 8 1 7 2 6 3 4 5 0 0 0 0 0 0 0 0
Discharge, d1.u 0.80 0.64 0.81 0.77 0.73 0.69 0.55 0.54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Discharge, d2.u 19 20 18 21 22 23 17 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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system parameters applied here are 0.2 pu for rated power and
0.4 h pu for battery capacity. The smoothened demand values are
in the Charge and Discharge matrices (c1.m and d1.u respectively).
The hours when the battery system operates in the charging mode
(c2.m) and in discharging mode (d2.u) are defined. The Q matrix
shows state of charge of the battery during the day indicating that
the charge of the battery at the beginning and at the end of the day
is the same – zero (battery is empty).

The results of the time-dependent management (Charge and
Discharge matrices of Table 3) are shown in Fig. 8. At the beginning
of the day, at the 4th and 5th hour, the battery system operates at
rated power (0.2 pu) in charging mode, consuming 0.4 h pu of en-
ergy, which is exactly the capacity of the battery. During these
hours of valley demand, the demand deviation from the reference
is the highest. Due to losses in the energy-conversion processes,
the battery does not reach fully charged status and some portion
of energy is used in the 3rd hour to charge the battery completely.
The 3rd hour has the next highest deviation after the 4th and 5th
hours during valley demand. In discharging mode, the battery
operates in a similar way. Demand is shaved in the 19th hour
and the rest of the battery energy is used to decrease demand in
the 20th hour. The battery stays empty until the end of the day,
so that at the beginning of the next day the state of charge of the
battery is again 0 h pu. Fig. 8 implies that more energy is consumed
when the battery system is being charged (from the 3rd to the 5th
hour) than discharged (in the 19th and 20th hours). This is due to
the battery system’s efficiency, which is 0.77.

A battery system with high rated power and high battery capac-
ity may produce the opposite effect, i.e. an increase in demand var-
iability. This can be caused by the battery system being
Fig. 8. Representative average daily demand profile in spring in Denmark wi
constrained to operate at rated power. These cases are not feasible
and are not presented here.

3.2.2. Demand-tracking battery-system-management model
This subsection presents the unique part of the demand-track-

ing model. As in the previous model, this unique part presented
in Fig. 7 takes as an input the output of the flowchart in Fig. 5.
As with the time-dependent model, in Fig. 7 for the demand-track-
ing model the Charge and Discharge matrices are arranged in
descending order. The hours with the highest deviations above
and below the reference are the first to be smoothened. Thus, the
biggest entry in the Discharge matrix is reduced and the smallest
non-zero entry in the Charge matrix is increased by Step � g and
Step respectively. The battery use is registered accordingly. The
three conditions as described in the previous subsection and two
more conditions are checked. These two additional conditions are:

1. The smoothened demand value through charging (c1.m) is equal
or smaller to Ref.

2. The smoothened demand value through discharging (d1.u) is
equal or bigger to Ref.

If all five conditions are met, the Discharge and Charge matrices
are arranged again in descending order and the cycle is repeated.

However, if these conditions are not met, then the changes per-
formed in the last smoothening cycle involving the Charge matrix
and consequently the relevant entries in the Q matrix are can-
celled. Then the next smallest entry in the Charge matrix is in-
creased by Step and the battery state of charge is changed
accordingly. The smoothening continues for the specific entry at
th and without the battery system under the two management models.



Table 4
The final entries in the Q, Charge and Discharge matrices using the demand-tracking battery system management for the representative average daily household-demand profile in
spring in Denmark.

Entries (r, m, u) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Q, qr 0.00 0.13 0.34 0.58 0.83 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.27 0.07 0.00 0.00 0.00 0.00
Charge, c1.m 0.53 0.52 0.51 0.51 0.51 0.50 0.48 0.48 0.45 0.38 0.37 0.37 0.37 0.37 0.37 0.37 0 0 0 0 0 0 0 0
Charge, c2.m 12 11 13 14 16 10 9 15 8 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0
Discharge, d1.u 0.80 0.74 0.74 0.74 0.73 0.69 0.55 0.54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Discharge, d2.u 19 18 20 21 22 23 17 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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which all five conditions are finally met. If all the entries in the
Charge matrix have been checked, but the conditions are still not
met, then the last changes in the Discharge matrix are also can-
celled along with the battery state of charge. The next entry now
of the Discharge matrix is treated in the smoothening cycle. This
procedure continues until the conditions are met for a combination
of entries in the two matrices. Then the smoothening cycle starts
over from arranging the two matrices again.

If no more smoothening is possible for any combination of en-
tries in the Discharge and Charge matrices under the above condi-
tions, the smoothening is completed. The data of the smoothened
demand for the representative example (spring in Denmark) is
stored in the Charge and Discharge matrices as shown in Table 4.
As in the previous section the rated power of the battery system
and the battery capacity used are 0.2 pu and 0.4 h pu respectively.
The battery system’s instantaneous power is the difference be-
tween the initial demand (pi) and the smoothened demand (d1.u

or c1.m).
The results of the demand-tracking battery system manage-

ment (Charge and Discharge matrices of Table 4) are shown in
Fig. 8. As with the time-dependent management system, under
the demand-tracking management model, the battery system is
fully charged during the first hours of the day at valley demand
and fully discharged at the end of the day during high demand (Ta-
ble 4). Since the demand-tracking management model is used for a
battery system with variable power, at the beginning of the day de-
mand is smoothened uniformly between the 2nd and the 6th hour.
At peak demand at the end of the day, the demand is smoothened
from the 18th to the 21st hour. During the 19th hour, peak-de-
mand shaving is limited due to the rated power of the battery sys-
tem (0.2 pu).
4. Study results and discussion

This section describes and discusses the results of the two bat-
tery-system-management models in household-demand smooth-
ening. The representative demand-smoothening results for
Portugal and Denmark are presented in detail in order to show
the differences in the smoothening characteristics for individual
countries and in the battery system effect from one season to an-
other. The overall results for demand smoothening and peak shav-
ing include all the countries studied: Denmark, Portugal, Greece,
France and Italy. Various battery-system parameters (system rated
power and battery capacity) are used to perform a sensitivity anal-
ysis. The demand-smoothening results in this section are ex-
pressed as standard deviation values (Eq. (1), Section 2) of
average daily demand profiles for the season concerned.
4.1. Smoothening results

Fig. 9 presents the smoothening results of average daily demand
profiles in spring and summer in Denmark. Spring characterises
with the highest demand variations and summer with the lowest.
Battery capacity ranges from 0.2 to 1.8 h pu and the battery
system’s rated power from 0.1 to 0.5 pu. It is noticeable that de-
mand smoothening depends on both battery capacity and the bat-
tery system’s rated power. For example, during the spring and
under the demand-tracking model, for 0.1 pu of battery system
rated power, the standard deviation decreases as the battery
capacity increases up to 0.6 h pu. Further increases in battery
capacity do not produce further smoothening results. This is due
to the limited rated power of the battery system (0.1 pu). To obtain
further smoothening results, the rated power of the battery system
needs to be greater.

Another limitation in demand smoothening is the way in which
it is managed. In Denmark in spring, for example, for a battery sys-
tem with a rated power of 0.2 pu, the standard deviation falls to
0.068 under the demand-tracking model (Fig. 9). On the other
hand, under the time-dependent management model, the standard
deviation falls to only 0.086. These are the maximum smoothening
values that can be achieved at a battery system rated power of
0.2 pu, regardless of the size of battery capacity.

Under the demand-tracking model, as the battery-system
parameters increases, so does the smoothening effect (or it re-
mains constant). This trend changes under the time-dependent
management model, which does not achieve complete smoothen-
ing. A similar smoothening effect was achieved using both man-
agement models at low values for the battery system’s technical
parameters but at higher values the time-dependent management
model has less of an effect on smoothening. For example, in Den-
mark in spring at a relatively low battery-system rated power of
0.1 pu and at low battery capacities of 0.2 h, 0.4 h and 0.6 h pu,
both management models achieve a similar smoothening effect.
But at a battery-system rated power of 0.4 pu, the management
models achieve similar results only when the battery capacity is
0.2 h pu (around 0.17). With higher battery capacity, at the same
system rated power (0.4 pu), the demand-tracking management
model achieves better smoothening results than the time-depen-
dent management model.

If the time-dependent management model is run with a high
battery-system rated power, it can even produce the opposite ef-
fect: a decrease in smoothening. For example, a battery system
rated power of 0.3 pu produces better demand smoothening than
a battery system rated power of 0.4 pu because the system oper-
ates at constant (rated) power (Fig. 9).

Fig. 9 shows that in Denmark in summer the standard deviation
without a battery system is lower than it is in spring. In summer,
less battery capacity and battery-system rated power is required
to achieve complete smoothening (standard deviation close to
zero). When using the demand-tracking management model in
the spring, 1.6 h pu battery capacity and 0.5 pu battery system
rated power are required for complete smoothening. To achieve
the same result in summer, it requires 1.2 h capacity and 0.3 pu
system rated power.

The scenario in Portugal in Fig. 10 represents smoothening re-
sults of average daily demand profiles in the seasons with the high-
est and the lowest demand variations: winter and autumn
respectively. The standard deviation of the demand profile in win-
ter without a battery system is similar to that in Denmark in spring



Fig. 9. Representative smoothening results of average daily demand profiles in spring and summer in Denmark with different battery-system parameters and management
models.

Fig. 10. Representative smoothening results of average daily demand profiles in winter and autumn in Portugal with different battery-system parameters and management
models – without PV.

Fig. 11. Representative smoothening results of average daily demand profiles in spring and autumn in Portugal with different battery-system parameters and management
models – with PV.
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(Fig. 9). However, autumn demand in Portugal has a flatter profile
than in Denmark during the summer. The case of Portugal was also
studied at high PV penetration. Fig. 11 shows that PV integration in
Portugal increases the demand variability and changes the season
with the highest demand variations from winter to spring. Com-
pared with Denmark, in Portugal without PV penetration the same
battery capacity of 1.6 h pu is needed to almost reach zero stan-
dard deviation under the demand-tracking management model,
but required battery-system rated power is lower, i.e. 0.3 pu. When
adding PV to the distribution grid, the requisite system rated
power increases to 0.4 pu and battery capacity to 1.8 h pu in order
achieve complete smoothening. Figs. 10 and 11 also compare the



Fig. 12. Overall smoothening results of average daily demand profiles during the seasons with the highest demand variations in Denmark, Portugal, Greece, France and Italy
(with and without PV) with different battery-system parameters and management models.

Table 5
Required battery system parameters for complete and 50% demand smoothening and resulted peak reduction using demand-tracking model.

Country PV Complete smoothening 50% Smoothening

Battery system (pu) Peak demand reduction (%) Battery system (pu) Peak demand reduction (%)

Battery capacity Rated power Battery capacity Rated power

Denmark No 1.6 h 0.5 44 0.8 h 0.2 20
Portugal No 1.6 h 0.3 28 0.8 h 0.2 19

Yes 1.8 h 0.4 34 1.0 h 0.2 20
Greece No 1.8 h 0.4 40 0.8 h 0.2 20

Yes 2.2 h 0.5 47 1.2 h 0.2 20
France No 1.0 h 0.3 27 0.6 h (0.4 h) 0.1 (0.2) 10 (17)

Yes 1.2 h 0.3 29 1.8 h (0.6 h) 0.1 (0.2) 10 (20)
Italy No 2.0 h 0.4 36 1.0 h 0.2 20

Yes 2.0 h 0.4 39 1.0 h 0.2 20
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two management models compared previously for the case of Den-
mark. The difference between the two models is similar in both
countries.

The overall effect on household-demand smoothening is pre-
sented in Fig. 12, including all countries studied in this article. Only
the seasons in which the average daily demand profile shows the
highest demand variations are presented (Table 1). Both scenarios,
with and without PV penetration, are included. Using smoothening
results from other seasons would generate the wrong conclusions
due to the difference in the ratio between the battery-system
parameters and the peak demand. For example, if the battery-sys-
tem rated power is 10% of Denmark’s peak demand in spring, then
the battery-system rated power’s proportion of the summer peak
demand will be more than 10% due to a lower peak in summer.
The values on the vertical axis indicate the reduced standard devi-
ation achieved with each battery system, assuming that the stan-
dard deviation without any battery system is 100%.

Fig. 12 shows the results for both management models with dif-
ferent battery-system parameters. The variation ranges reflect dif-
ferent smoothening results for different demand profiles. The
figure shows that at low battery capacities (0.2 h and 0.4 h pu)
and the low battery-system power of 0.1 pu, both management
models produce quite similar smoothening results. High range of
the smoothening effects is due to different demand profiles. If,
for example, the desired reduction of the standard deviation is
30–45%, the required battery-system rated power and battery
capacity will probably be close to 0.1 pu and 0.6 h pu respectively.
In this case, using a time-dependent management model is suffi-
cient. At higher battery-system parameters, a demand-tracking
model shows better results, but the resultant smoothening range
may be as much as 50% points. This indicates that for high smooth-
ening results, the demand profile plays an important role.
Individual country results in demand smoothening are listed in
Table 5 indicating the necessary (minimum) battery system
parameters for complete and 50% demand smoothening. Only de-
mand-tracking model is presented since according to Fig. 12 it is
essential for high smoothening. Complete smoothening is consid-
ered if the standard deviation falls below 0.01; whereas 50%
smoothening means that the standard deviation of demand profile
is reduced by half. If the smoothening can be achieved with differ-
ent battery system configurations, it is also presented in Table 5,
but only in the case in which the increase of one parameter (bat-
tery capacity or battery system rated power) result in the decrease
of the other. For example, in France case without PV, the 50%
smoothening can be achieved with battery capacity of 0.6 h pu
and battery system rated power of 0.1 pu or with lower battery
capacity (0.4 h pu) and higher battery system rated power (0.2 pu).

Table 5 shows that in general the less demanding case is France
since it requires lower battery capacity and battery system rated
power. This is due to the lower France demand variations (Table 1).
In Portugal, Greece and France cases PV penetration increases the
required battery system parameters, but in Italy they remain the
same. This indicates that each case is country specific which im-
plies the way the demand variations are altered due to the PV
penetration.

4.2. Peak-shaving results

Another key objective in battery-system applications is peak-
demand shaving as it plays an important role in determining the
size (rated power) of all power elements in the energy-transfer
corridor.

The overall peak-shaving results using a battery system are
shown in Fig. 13. It shows only the seasons with the average daily



Fig. 13. Overall peak-shaving results of average daily demand profiles during the seasons with the highest peak demand in Denmark, Portugal, Greece, France and Italy (with
and without PV) using different battery-system parameters and management models.
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demand profile which present the highest peak demand (including
cases with and without PV generation, Table 1). It is the peak that
determines the rated-power values of the electricity-supply corri-
dors. The range in the figure indicates the spectrum of the results
from the peak shaving of the demand profiles.

In Fig. 13, the peak demand is considered to be 100%. The best
peak shaving is achieved with the demand-tracking management
model. For a battery capacity of 1.6 h pu and a battery system rated
power of 0.5 pu, the peak decreases by 27–45%. This value is theo-
retically the maximum peak shaving possible with the current bat-
tery-system properties and assumptions (described in Section 3.1).
In this case, the demand profile is practically flat, i.e. fully smooth-
ened. For demand profiles with low variations, e.g. in France, the
maximum peak demand reduction is close to 30%; whereas in
other countries studied with higher demand variations it can reach
40–45%, e.g. in Greece and Denmark case (Table 5).

Maximum peak shaving for other battery-system rated powers
(from 0.1 to 0.4 pu) is determined by these power values, provided
that there is sufficient battery capacity. For example, following
Fig. 13, at a battery-system rated power of 0.2 pu, the maximum
peak reduction is 20% and is achieved at a battery capacity of
0.4 h pu under the demand-tracking management model in one
or more countries studied. Furthermore, increase in battery capac-
ity to 1.0 h pu leads to the peak demand reduction by 20% in all the
studied countries. Also Table 5 approves this fact: in 50% smooth-
ening the peak demand reduction is equal or smaller then the bat-
tery-system rated power. Further increases in battery capacity do
not lead to any additional peak shaving, since it is limited by the
battery-system rated power. However, further increase in battery
capacity affects demand smoothening, as stated in the previous
section (Fig. 12). Under the time-dependent management model,
the peak-shaving results are rather stochastic. It is not sufficient
to achieve a high peak reduction.

In general, the range of the peak-shaving effect can vary greatly
(up to 15% points) between different demand profiles. This indi-
cates that each demand-peak-shaving case requires a specific
study to obtain accurate results. However, for low battery-system
parameters, e.g. at system rated power 0.1 pu and battery capacity
0.2 h pu, the results are fairly similar, even for different demand
profiles.
4.3. Feasibility

Complete smoothening of the demand profile (standard devia-
tion close to zero) in all seasons will sufficiently decrease the an-
nual utilisation of the battery-system rated power and battery
capacity. This is due to variations in the demand profile between
seasons. Figs. 9–11 show that in both Denmark and Portugal,
installing a battery system for complete smoothening throughout
the year will reduce the use of the system. It is clear that, in this
case, during seasons with lower demand variations, neither the
battery capacity nor the system rated power will be completely
utilised. This in turn decreases the annual utilisation (capacity fac-
tor) of the battery system.

The feasibility of using battery systems for household-demand
smoothening from the end user side can be roughly calculated
from the life cycle costs (including capital and operating costs)
and benefits due to electricity-price elasticity in battery charging
and discharging time periods. According to Ekman and Jensen
[21], a regulated energy market providing a high range of electric-
ity prices in valley and peak demand hours is essential in order to
stimulate investment in these technologies by end users. The pro-
portion of the electricity price comprised by battery charging and
discharging times should be lower than the total battery-system
efficiency. Thus, each additional charging–discharging cycle could
bring additional profit. On the other hand, the quantity of these cy-
cles is limited and varies between the various battery types.
According to Sullivan and Gaines [22], a lead-acid battery has a cy-
cle life of around 500 at deep discharge; for lithium-ion batteries, it
is much higher – 6000. The daily demand profile is usually charac-
terised by a valley-demand period during the night, in which the
battery system operates only in charging mode for demand-
smoothening purposes. Over the rest of the day during the peak de-
mand (in the morning and/or evening) the battery operates in dis-
charging mode in order to transfer the stored energy back to the
grid. This completes the charging–discharging cycle for the day
and it starts again the next day. Considering the one-day cycle per-
iod for the battery system, the lead-acid battery would have a life
cycle of about 1.5 years, whereas the lithium ion technologies
would last for 16 years.

Furthermore, at distribution-grid level, other technical benefits
due to demand smoothening (and peak shaving), such as those al-
ready mentioned (the increased capacity factor of power-transfer
corridors and of conventional power generators, and the height-
ened security of energy supply) should be considered when carry-
ing out feasibility studies of battery systems.
5. Conclusions

This article discusses the overall role that battery-based energy-
storage applications can have in household demand smoothening.
It proposes two battery-system-management models. The results
are provided in relative values and include studies of five coun-
tries: Denmark, Portugal, Greece, France and Italy.
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On the issue of demand smoothening (reducing the standard
deviation), battery storage systems with low rated power and
low battery capacity could produce similar effects for different de-
mand profiles. At low battery-system parameters, the two manage-
ment models also produce similar results. Thus, assuming that the
peak power in the daily demand profile is 1 �W, the standard
deviation from the initial demand profile could be reduced by
30–45% using a battery system with rated power of 0.1 �W and
battery capacity of up to 0.6 �W h. Thus, up to these battery sys-
tem parameters, a time-dependent management model for a sim-
ple battery system operating at constant (rated) power is sufficient.
However, to achieve further smoothening, a more elaborate man-
agement – such as a demand-tracking management model – is re-
quired. This model is designed for a battery system with variable
power, an essential requirement for high demand smoothening.
Higher battery-system parameters produce different smoothening
effects when applied in different demand profiles.

Peak-demand-shaving results in general are more dependent on
the demand profile. So, for high peak-demand shaving and also for
high demand smoothening, each case should be studied separately
to obtain accurate results. Moreover, only the demand-tracking
management model is capable of achieving maximum peak shav-
ing (complete demand smoothening).

High PV penetration in the distribution grids studied in the case
of Portugal leads to an increase in the required battery-system
parameters for complete smoothening, indicating that the daily de-
mand-profile variations increase as a result of PV installation. Sim-
ilar results are obtained for Greece and France, but not in the
Italian case. In the latter, high PV penetration does not significantly
influence the smoothening effect of the battery system. However,
these results suggest that the issue of variability in demand and
generation is even more urgent, given the European energy plans
for extensive RES integration.

Similarly, battery systems could provide ancillary services to
address the power balance at transmission-grid level. For exam-
ple, batteries can provide energy storage where high wind-farm
generation creates a power surplus. This stored energy can be
used later in demand-peak shaving. The need for such services
will rise following the trend to increase the penetration of vari-
able RES [23]. In addition, wind-farm generation also varies from
one season to another. Seasonal correlation between low demand
and high wind-farm generation (or high demand and low wind-
farm generation) could create an additional challenge to RES inte-
gration [24].
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