

Survey on Interoperability of Energy Smart Appliances

Supporting the development of policy proposals for energy smart appliances.

Andreadou N., Foretić, H., Gonzalez Cuenca, I., Tarramera Gisbert, A.

8 November 2022

Agenda

- **1. Introduction**
- 2. Survey structure
- **3. Technical Data on Energy Smart Appliances**
 - **3.1. Devices Manufactured**
 - **3.2. Messages Exchanged**
 - 3.3. Communication Standards / Protocols used
 - **3.4. Interoperability issues**
- 4. Energy Smart Appliances and society
- **5.** Summary

Agenda

- **1. Introduction**
- 2. Survey structure
- **3. Technical Data on Energy Smart Appliances**
 - **3.1. Devices Manufactured**
 - **3.2. Messages Exchanged**
 - 3.3. Communication Standards / Protocols used
 - **3.4. Interoperability issues**
- 4. Energy Smart Appliances and society
- **5.** Summary

1. Introduction

JRC delivered to ENER by today:

1. <u>Creation of project website</u> *✓*

https://ses.jrc.ec.europa.eu/development-of-proposals-for-energy-smart-appliances

2. Literature review ☑

Ecodesign Preparatory work, Interconnect, SGTF EG1, ETSI Smart Appliances, California Legislation, Energy Star Initiative, Energy@ Home, IEA EDNA, APPLiA, EEBUS, BRIDGE and more

3. <u>Development of use cases</u> ✓

36 Use Cases ⇒ 4 High Level Use Cases

4. <u>Defining the principles for data sharing among appliances</u> *✓*

Actors/ Message exchange of smart appliances

Energy Smart Appliances' Interoperability: Analysis on Data Exchange from State-of-the-art Use Cases Technical report 2-3-4.

Support on the development of policy proposals for Interoperability (IOP) of Energy Smart Appliances (ESA)

JRC's remaining tasks:

- 5. Development of interoperability requirements for ESA \boxtimes in collaboration with stakeholders, such as manufacturers, etc.
 - Survey on interoperability of ESA \checkmark
 - Workshop Ongoing
- 6. Setting up a Code of Conduct (CoC)

Drafting the CoC, consulting the stakeholders and attracting signatories

7. <u>Setting up methodology/ laboratory procedures</u> X

for the certification/conformity purposes of energy smart appliances.

More info

CoC

European Commission

Agenda

- **1. Introduction**
- **2.** Survey structure
- **3. Technical Data on Energy Smart Appliances**
 - **3.1. Devices Manufactured**
 - **3.2. Messages Exchanged**
 - 3.3. Communication Standards / Protocols used
 - **3.4. Interoperability issues**
- 4. Energy Smart Appliances and society
- **5.** Summary

2. Survey structure

Survey structure: Scope

Survey structure: Technical Data

Survey structure: General Questions

Code of conduct	Issues that prevent the uptake of energy smart appliances	Improve the engagement of citizens	Services most important provided by energy smart appliances	Issues related to the data associated with energy smart appliances	application programming interfaces
Interest in participating	Lack of incentives	Facilitating decision- making throug relevant information access Raising awareness	Access and visualisation of energy consumption data for each appliance Easier identification of consumption of self-	Risks related to privacy and data protection Lack of	(APIs) Cybersecurity
willing to adhere	technologies and lack of simple plug-and- play solutions Cost of purchasing an energy smart appliance compared to unclear or insufficient benefits.	Providing tailored advice to reduce the energy consumption and their energy bill(s) Enabling more mobilisation by	generated energy Services to better understand, control and eventually change their patterns. Services to have economic profits from changing their	interoperability and/ or EU-wide agreed standards for data exchange The lack of easy and digital identification to validate access to consumer/customer	Privacy
is sufficient in promoting the interoperability	Risk of cyber attacks Other	facilitating exchanges and data sharing Providing incentives	consumption pattern Combine energy services with non- energy services Other	Societal challenges (reluctance,awarenes, trust) Other	Other issues
					European

Commission

Survey structure: Participants

Survey structure: Participants

Agenda

- **1. Introduction**
- 2. Survey structure
- **3.** Technical Data on Energy Smart Appliances
 - **3.1. Devices Manufactured**
 - **3.2. Messages Exchanged**
 - 3.3. Communication Standards / Protocols used
 - **3.4. Interoperability issues**
- 4. Energy Smart Appliances and society
- **5.** Summary

3. Technical Data on ESA

Agenda

- **1. Introduction**
- 2. Survey structure
- **3.** Technical Data on Energy Smart Appliances
 - **3.1. Devices Manufactured**
 - **3.2. Messages Exchanged**
 - 3.3. Communication Standards / Protocols used
 - **3.4. Interoperability issues**
- 4. Energy Smart Appliances and society
- **5.** Summary

3.1. Devices manufactured

Types of devices manufactured

Number of participants that manufacture a specific category of devices

	% related to the no of participants active in the field	% related to the total no of participants	Absolute no
Manufacturers devices for contr within the house	of 85% ol	30%	17
Manufacturers devices for contr outside the house	of 50% ol	4%	2
Manufacturers Energy Sma Appliances	of 93% rt	23%	13

Devices for control purposes

Devices inside home (sample 17 manufacturers):

Devices outside the house (sample 2 manufacturers)

Device manufactured	No of manufacturers	Device manufactured	No of manufacturers
Smart App	2	Linear Pilot Backend	1
Smart Charging App	2	Signal Receiver	1
Smart Storage System	2	VPP – intelligent load manager	1
Smart orchestrator	1	Platform	1

Energy Smart Appliances manufactured

Types of ESA manufactured (sample: 13 manufacturers)

Types of ESA manufactured

HVAC (sample 7 manufacturers)

ESA	% of manufacturers related to the no. of manufacturers of HVAC appliances	Absolute no
Heating appliances	100%	7
Ventilation appliances	71%	5
Air conditioning appliances	71%	5

Continuous appliances (sample 5 manufacturers)

ESA	% of manufacturers related to the no. of manufacturers of continuous appliances	Absolute no
Water heaters/ kettles	80%	4
Electric storage water heater	80%	4
Electric ovens	40%	2
Electric hobs	40%	2
Vacuum cleaners	40%	2
Range hoods	40%	2
Refrigerators	40%	2
Freezers	40%	2

Types of ESA manufactured

Periodical appliances (sample 2 manufacturers)

ESA	% of manufacturers related to the no. of manufacturers of periodical appliances	Absolute no
Dishwashers	100%	2
Washing machines	100%	2
Tumble dryers	100%	2
Washer dryers	100%	2

Lighting appliances (sample 2 manufacturers

ESA	% of manufacturers related to the no. of manufacturers of HVAC appliances	Absolute no
LFL - Linear	100%	2
fluorescent lamp		
CFL - Compact	100%	2
fluorescent light		
GLS - general	100%	2
lighting service		
LED - light emitting	100%	2
diode		
High intensity	100%	2
discharge (HID)		
lamp		

Types of ESA manufactured

Battery-operated rechargeable appliances (sample 2 manufacturers)

ESA	% of manufacturers related to the no. of manufacturers of battery- operated appliances	Absolute no
Household appliances (shaving appliances, fans, vacuum cleaners etc.)	100%	2

Residential energy storage system (sample 1 manufacturer

ESA

Solar energy storage unit

Other appliances

- EV charger
- Solar PV smart inverter
- Shading door gates motors

Agenda

- **1. Introduction**
- 2. Survey structure
- **3.** Technical Data on Energy Smart Appliances
 - **3.1. Devices Manufactured**
 - **3.2. Messages Exchanged**
 - 3.3. Communication Standards / Protocols used
 - **3.4. Interoperability issues**
- 4. Energy Smart Appliances and society
- **5.** Summary

3.2. Messages Exchanged

Control Device within the home $\leftrightarrow \mathsf{ESA}$

Control Device within the home \leftrightarrow ESA

Data Management

Control of the flexibility

Control Device within the home \leftrightarrow ESA

Control Device Outside the home $\leftrightarrow \mathsf{ESA}$

Control Device Outside the home $\leftrightarrow \mathsf{ESA}$

Data Management

Control of the flexibility

Control Device Outside the home \leftrightarrow ESA

Energy Provider \leftrightarrow ESA

Type of stakeholder		Data Management									1	
Energy Provider	40%	Dua management										
ESA	55%	Control of the flexibility										
Both	5%	Alerts										
Total	20	Price Information / Tariffs										
	Data	on energy consumed / produced		-								
	Ava	ailability Status / Update of Status										
		Feedback on control commands			,							
	R	equest of price information/ tariffs				-						
		0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
				Yes 🗖	No							
										2 1		

Energy Provider \leftrightarrow ESA

Data Management

Control Device Outside the home \leftrightarrow ESA

Feedback on control Alerts commands Switch on / Switch off 10% commands. Time slot for being 34% Grid parameters that 9% active / non active. are critical. i.e. overload, voltage 10% Time window duration. and/or frequency deviation. 11% Schedule of activation. 5% Other (Deviations from NO YES NO YES Set Points) 49% 51% 60% 40% 8% Override commands / Stop activation. 4% Store energy command. 6% Other (Weather) 7% Energy reduction command. 1% Other (Compsumption Other (Device Error) 6% forecast - 15min/1h)

User / Costumer \leftrightarrow ESA

Type of stakeholder		Comfort Boundaries										
User / Costumer	20%	liser Presence			_							
ESA Manufacturer	80%	User resence										
Both	0%	Control actions: switch on and off the appliance										
Tota	l 15	Activation of a non-energy smart appliance										
		Price information/ tariffs										
		Consumption/ generation data										
		Information about flexibility								-		
		Alerts										
		0%	% 10%	% 20%	30%	40%	50%	60%	70% 8	30% {	90% 100)%
			■ Yes	No								

User / Costumer \leftrightarrow ESA

User / Costumer \leftrightarrow ESA

Agenda

- **1. Introduction**
- 2. Survey structure
- **3.** Technical Data on Energy Smart Appliances
 - **3.1. Devices Manufactured**
 - **3.2. Messages Exchanged**
 - 3.3. Communication Standards / Protocols used
 - **3.4. Interoperability issues**
- 4. Energy Smart Appliances and society
- **5.** Summary

3.3. Communication Standards/ protocols used

Communication standards / protocols used

Communication	No of	Communication	No of
standards/	participants	standards/	participants
protocols used		protocols used	
Modbus	9	OCCP	2
SAREF	8	OpenADR	2
EEBus	6	IEEE 2030.5	2
APIs (Rest,	6		
Local, etc)		BACnet	2
KNX	4	WiFi	2
ZigBee	3		

Other communication standards/ protocols

Communication standard/ protocol used					
Bluetooth	IO-HOME	Profibus			
HTTP/TCP/IP	FlexOffer	BIM			
OPC	ASHRAE 223P				

Other ontologies used

Protocols/ ontologies used						
RESTAPI	Brick	Webservices	WiFi			
IEEE 2030.5	IEC 104	OpenTherm	ZigBee			
KNX	TCP/IP	OCPP	DALI			
Haystack						

Issues related to SAREF

Willingness to work with SAREF

Suggestions for SAREF improvement

- Plugins should be added to reduce customization effort by non-experts
- Include the notion of time series and its support
- The specification needs to be covered by EEBus;
- The ontology needs to expand to encapsulate all data structures inherited from the IEC/CIM ontologies

Agenda

- **1. Introduction**
- 2. Survey structure
- **3.** Technical Data on Energy Smart Appliances
 - **3.1. Devices Manufactured**
 - **3.2. Messages Exchanged**
 - 3.3. Communication Standards / Protocols used
 - **3.4. Interoperability issues**
- 4. Energy Smart Appliances and society
- **5.** Summary

3.4. The interoperability issues

Question 11. Have you ever experienced interoperability issues?

Considering the whole sample of participants (56) :

Considering the 22 replies whether or not:

Which layer of interoperability?

Question 12. Are you performing interoperability tests for ESAs?

Considering the whole sample of participants (56) :

Considering the 22 replies whether or not:

Which kind of tests have been performed related to IOP of ESA?

Methodology used

Specific methodology?

Which ones?

Agenda

- **1. Introduction**
- 2. Survey structure
- **3. Technical Data on Energy Smart Appliances**
 - **3.1. Devices Manufactured**
 - **3.2. Messages Exchanged**
 - 3.3. Communication Standards / Protocols used
 - **3.4. Interoperability issues**
- 4. Energy Smart Appliances and society
- **5.** Summary

4. Energy Smart Appliances and their role in the society

Code of Conduct for IOP of ESA 1/2

Initiative launched by the

Targeted towards...

ESA manufacturers and other actors in the industry.

The **goal** is

Achieving IOP of different smart home actors with ESA.

Code of Conduct for IOP of ESA 2/2

The contents of CoC yet to be drafted and agreed upon.

Signing/ adherening to the CoC is completely voluntary.

Signatories **committing** taking actions to **support IOP** related to ESA.

Interest in the participation in the design of Code of Conduct

Stakeholders who answered "Yes":

- Manufacturing business 43%
- Not in the manufacturing business 57%

Good indicator that ALL actors are concerned with what CoC will bring.

Reasons for "No":

• "Prefering standards over CoC", "Scope of the CoC not clear", "Out of their business scope"

Willingness to adherence to CoC

<u>Takeaways</u>:

- Half are not concerned with adherence to CoC.
- All the others are <u>willing to adhere to the</u> <u>future CoC.</u>
- Only 2 of them not willing to adhere, reasons notably being:
 - "Scope of the CoC not clear", "CoC does not guarantee IOP"
 - Both of them also answered they are not willing to co-design CoC.

European

CoC sufficient in promoting IOP of ESA 1/2

Takeaways:

- Almost half of **all** participants are **NOT** in favour that it stays just on CoC, as expected.
- For many more this is not applicable or they are not sure.
- Worth mentioning that some of them consider CoC already sufficient.c

CoC sufficient in promoting IOP of ESA 2/2

ESA and engagement of public 1/6

ESA and engagement of public 2/6

Other reasons preventing the uptake of ESA

Lack of IOP and IOP standards

Lack of or problematic business cases

Lack of info for user engagement

Not clear the need for ESA to reduce energy

ESA and engagement of public 3/6

Improve the engagement of citizens

Of all participants

ESA and engagement of public 4/6

Other ways of improving the uptake of ESA

ESA and engagement of public 5/6

ESA and engagement of public 6/6

Other services that can be offered by ESA

Use better critical resources, like water	Contribute in better integration of renewable energy
Inform on the state of electrical network, management of electrical peak	Facilitate collaboration of service providers
Ensuring better thermal comfort and in-door air quality	

Security and privacy issues 1/4

Security and privacy issues 2/4

Security and privacy issues 3/4

Security and privacy issues 4/4

Concerns and additional issues about the IOP of ESA

Interference that can be created by ESA in the network – concern that they can disturb the Power Line Communications network – there should be a standard that limits the interferences created by ESA	d consider that it is the ESAs that give ervices to occupants
What happens to the device or software if company closes or if cloud disappears?IOP issues: - IOP tests sh California thr - Too rigid focu - Ontologies a	ould come with certification, like in ough IEEE 2030-5 CSIP is on IOP can hamper innovation s driver for IOP
How ESA connect to the IoT of the home? - Extra approving purposes - Data Integrity	val if data is used for research
Is there going to be also a Business to business Regulations co focus instead of Business to consumer focus? - Limited app	ncerns: licability of legislation
Grid short term peak load demand when switching on and off the devices Open APIs conc - Available bet equipment	erns: ween ecosystem and not between
Solar PV smart inverters and EVs should be considered together with ESA	European Commission

Agenda

- **1. Introduction**
- 2. Survey structure
- **3. Technical Data on Energy Smart Appliances**
 - **3.1. Devices Manufactured**
 - **3.2. Messages Exchanged**
 - 3.3. Communication Standards / Protocols used
 - **3.4. Interoperability issues**
- 4. Energy Smart Appliances and society
- **5.** Summary

5. Summary

On the Survey

Survey	
Representative	
Interest	

- Interest for participating from several countries.
- Interest in joining the follow-ups of this project (e.g. second Workshop)
- Spontaneous interest of participation
- Accepted proposed classifications:
 - ✓ Actors
 - ✓ ESA categorization
 - ✓ Messages exchanged

What it is missing/need it.

- **Issues detected in all layers of interoperability.** Most complaints are related to the **information layer**
- Need to define protocols
- Need to find more consumer/user representation
- Need to test and certify
- Need to include battery energy storage system BESS ↔ ESA

What about the Code of conduct ?

Get involved!

Code of Conduct

Interoperability Energy Smart Appliances

Project's Website

Thank you and keep in touch Questions?

© European Union 2022

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

- EU Science Hub https://joint-research-centre.ec.europa.eu/
- @EU_ScienceHub
- EU Science Hub Joint Research Centre
- in, EU Science, Research and Innovation
 - EU Science Hub
- @EU_science

Reference links

Smart Grid Interoperability Laboratory.

- Smart Grid Interoperability Laboratory (Annual report 2021)
 https://publications.jrc.ec.europa.eu/repository/handle/JRC128465
- Smart Grid Design of Interoperability Tests (SG-DoIT)
 https://ses.jrc.ec.europa.eu/sgdoit
- Smart Electricity Systems and Interoperability: <u>https://ses.jrc.ec.europa.eu/</u>

